Badge encodings tutorial#

See the examples below for common ways to map data to node badges in Graphistry. Icons appear in the main area of a node, while badges circle them (TopRight, BottomLeft, Right, etc.). They can be used together.

Badges are quite configurable. You can set the glyph, color, border, and define their encoding to be based on the ndoe data.

The PyGraphistry Python client makes it easier to use the URL settings API and the REST upload API. For dynamic control, you can use also use the JavaScript APIs.

Setup#

Mode api=3 is recommended. It is required for complex_encodings (ex: .encode_point_size(...)). Mode api=1 works with the simpler .bind(point_size='col_a') form.

[ ]:
# ! pip install --user graphistry
import graphistry

# To specify Graphistry account & server, use:
# graphistry.register(api=3, username='...', password='...', protocol='https', server='hub.graphistry.com')
# For more options, see https://github.com/graphistry/pygraphistry#configure

graphistry.__version__
[ ]:
import datetime, pandas as pd
e_df = pd.DataFrame({
    's': ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'd', 'e'],
    'd': ['b', 'c', 'a', 'b', 'c', 'a', 'c', 'e', 'd'],
    'time': [datetime.datetime(1987, 10, 1), datetime.datetime(1987, 10, 2), datetime.datetime(1987, 10, 3),
             datetime.datetime(1988, 10, 1), datetime.datetime(1988, 10, 2), datetime.datetime(1988, 10, 3),
             datetime.datetime(1989, 10, 1), datetime.datetime(1989, 10, 2), datetime.datetime(1989, 10, 3)]
})
n_df = pd.DataFrame({
    'n': ['a', 'b', 'c', 'd', 'e'],
    'score': [ 1, 30, 50, 70, 90 ],
    'palette_color_int32': pd.Series(
        [0, 1, 2, 3, 4],
        dtype='int32'),
    'hex_color_int64': pd.Series(
        [0xFF000000, 0xFFFF0000, 0xFFFFFF00, 0x00FF0000, 0x0000FF00],
        dtype='int64'),
    'type': ['mac', 'macbook', 'mac', 'macbook', 'sheep'],
    'assorted': ['Canada', 'mac', 'macbook', 'embedded_smile', 'external_logo'],
    'origin': ['Canada', 'England', 'Russia', 'Mexico', 'China']

})

g = graphistry.edges(e_df, 's', 'd').nodes(n_df, 'n')

Badges as categorical mappings + glyph types#

The most common form is mapping distinct values to glyphs.

Graphistry supports built-in + custom glyphs:

  • Built-in general glyphs: Use values from Font Awesome 4 or, more explicitly, fa-thename

  • Built-in flag icons: Use ISO3611-Alpha-2 values

  • Custom image URL

  • Custom image data URI (embedded)

[ ]:
g.encode_point_badge(
  'assorted',
  'TopRight',
  shape="circle", #clip excess
  categorical_mapping={
      'macbook': 'laptop', #https://fontawesome.com/v4.7.0/icons/
      'Canada': 'flag-icon-ca', #ISO3611-Alpha-2: https://github.com/datasets/country-codes/blob/master/data/country-codes.csv
      'embedded_smile': '',
      'external_logo': 'https://awsmp-logos.s3.amazonaws.com/4675c3b9-6053-4a8c-8619-6519b83bbbfd/536ec8b5c79de08fcac1086fdf74f91b.png'
  },
  default_mapping="question").plot()

[ ]:
g.encode_point_badge(
  'assorted',
  'TopRight',
  shape="circle", #clip excess
  categorical_mapping={
      'macbook': 'laptop', #https://fontawesome.com/v4.7.0/icons/
      'Canada': 'flag-icon-ca', #ISO3611-Alpha-2: https://github.com/datasets/country-codes/blob/master/data/country-codes.csv
      'embedded_smile': '',
      'external_logo': 'https://awsmp-logos.s3.amazonaws.com/4675c3b9-6053-4a8c-8619-6519b83bbbfd/536ec8b5c79de08fcac1086fdf74f91b.png'
  },
  default_mapping="question",
  bg={'color': {'mapping': {'categorical': {'fixed': {}, 'other': 'white'}}}})\
.plot()

Badges as continuous mappings and styling#

You can also use value ranges to pick the glyph, and use text as the glyph

[ ]:
g.encode_point_badge(
    'score',
   'TopRight',
    continuous_binning=[
        [33, None],
        [66, 'info-circle'],
        [None, 'exclamation-triangle']
    ],
    border={'width': 2, 'color': 'black', 'stroke': 'solid'},
    color={'mapping': {'categorical': {'fixed': {}, 'other': 'black'}}},
    bg={'color': {'mapping': {'continuous': {'bins': [
        [33, '#ccc'],
        [66, 'yellow'],
        [200, 'red']
    ], 'other': 'black'}}}}).plot(render=False)

Flag inference#

The below code generates ISO3166 mappings from different conventions to Alpha-2

[ ]:
codes = pd.read_csv('https://raw.githubusercontent.com/datasets/country-codes/master/data/country-codes.csv')
codes.columns
[ ]:
country_to_iso_flag = {
    o['CLDR display name']: 'flag-icon-' + o['ISO3166-1-Alpha-2'].lower()
    for o in codes[['CLDR display name', 'ISO3166-1-Alpha-2']].dropna().to_dict('records')
}

# also try with   shape="circle" and   border={'width': 2, 'color': 'black', 'stroke': 'solid'}
g.encode_point_badge('origin', 'BottomRight', categorical_mapping=country_to_iso_flag).plot()
[ ]: