Icons encodings tutorial#
See the examples below for common ways to map data to node icon in Graphistry.
You can add a main icon. The glyph system supports text, icons, flags, and images, as well as multiple mapping and style controls. When used with column type
, the icon will also appear in the legend.
Icons are often used with node color, label, size, and badges to provide more visual information. Most encodings work both for points and edges. The PyGraphistry Python client makes it easier to use the URL settings API and the REST upload API. For dynamic control, you can use also use the JavaScript APIs.
Setup#
Mode api=3
is recommended. It is required for complex_encodings
(ex: .encode_point_size(...)
). Mode api=1
works with the simpler .bind(point_size='col_a')
form.
[ ]:
# ! pip install --user graphistry
import graphistry
# To specify Graphistry account & server, use:
# graphistry.register(api=3, username='...', password='...', protocol='https', server='hub.graphistry.com')
# For more options, see https://github.com/graphistry/pygraphistry#configure
graphistry.__version__
[ ]:
import datetime, pandas as pd
e_df = pd.DataFrame({
's': ['a', 'b', 'c', 'a', 'b', 'c', 'a', 'd', 'e'],
'd': ['b', 'c', 'a', 'b', 'c', 'a', 'c', 'e', 'd'],
'time': [datetime.datetime(1987, 10, 1), datetime.datetime(1987, 10, 2), datetime.datetime(1987, 10, 3),
datetime.datetime(1988, 10, 1), datetime.datetime(1988, 10, 2), datetime.datetime(1988, 10, 3),
datetime.datetime(1989, 10, 1), datetime.datetime(1989, 10, 2), datetime.datetime(1989, 10, 3)]
})
n_df = pd.DataFrame({
'n': ['a', 'b', 'c', 'd', 'e'],
'score': [ 1, 30, 50, 70, 90 ],
'palette_color_int32': pd.Series(
[0, 1, 2, 3, 4],
dtype='int32'),
'hex_color_int64': pd.Series(
[0xFF000000, 0xFFFF0000, 0xFFFFFF00, 0x00FF0000, 0x0000FF00],
dtype='int64'),
'type': ['mac', 'macbook', 'mac', 'macbook', 'sheep'],
'assorted': ['Canada', 'mac', 'macbook', 'embedded_smile', 'external_logo'],
'origin': ['Canada', 'England', 'Russia', 'Mexico', 'China']
})
g = graphistry.edges(e_df, 's', 'd').nodes(n_df, 'n')
Icons as categorical mappings + glyph types#
The most common form is mapping distinct values to icons.
Graphistry supports built-in + custom glyphs:
Built-in general glyphs: Use values from Font Awesome 4 or, more explicitly,
fa-thename
Built-in flag icons: Use ISO3611-Alpha-2 values
Custom image URL
Custom image data URI (embedded)
[ ]:
g.encode_point_icon(
'assorted',
shape="circle", #clip excess
categorical_mapping={
'macbook': 'laptop', #https://fontawesome.com/v4.7.0/icons/
'Canada': 'flag-icon-ca', #ISO3611-Alpha-2: https://github.com/datasets/country-codes/blob/master/data/country-codes.csv
'embedded_smile': '',
'external_logo': 'https://awsmp-logos.s3.amazonaws.com/4675c3b9-6053-4a8c-8619-6519b83bbbfd/536ec8b5c79de08fcac1086fdf74f91b.png'
},
default_mapping="question").plot()
Icons as continuous mappings and text#
You can also use value ranges to pick the glyph, and use text as the glyph
[ ]:
g.encode_point_icon(
'score',
as_text=True,
continuous_binning=[
[33, 'low'],
[66, 'mid'],
[200, 'high']
]).plot()
Special continuous bins#
For values bigger than the last bin, use
None
For nulls, use the default mapping
[ ]:
g.encode_point_icon(
'score',
as_text=True,
continuous_binning=[
[33, 'low'],
[66, 'mid'],
[None, 'high']
],
default_mapping='?'
).plot()
Flag inference#
The below code generates ISO3166 mappings from different conventions to Alpha-2
[ ]:
codes = pd.read_csv('https://raw.githubusercontent.com/datasets/country-codes/master/data/country-codes.csv')
codes.columns
[ ]:
country_to_iso_flag = {
o['CLDR display name']: 'flag-icon-' + o['ISO3166-1-Alpha-2'].lower()
for o in codes[['CLDR display name', 'ISO3166-1-Alpha-2']].dropna().to_dict('records')
}
g.encode_point_icon(
'origin',
shape="circle",
categorical_mapping=country_to_iso_flag,
default_mapping="question").plot()
[ ]: