AI#
graphistry[‘ai’] provides a set of utilities for AI and machine learning workflows on graphs, with optional GPU support
Featurize#
- class graphistry.feature_utils.Embedding(df)#
Bases:
object
Generates random embeddings of a given dimension that aligns with the index of the dataframe
- Parameters:
df (DataFrame)
- fit(n_dim)#
- Parameters:
n_dim (int)
- fit_transform(n_dim)#
- Parameters:
n_dim (int)
- transform(ids)#
- Return type:
DataFrame
- class graphistry.feature_utils.FastEncoder(df, y, kind='nodes')#
Bases:
object
- Parameters:
df (DataFrame)
y (DataFrame)
- fit(src=None, dst=None, *args, **kwargs)#
- fit_transform(src=None, dst=None, *args, **kwargs)#
- scale(X=None, y=None, return_pipeline=False, *args, **kwargs)#
Fits new scaling functions on df, y via args-kwargs
- Example:
from graphisty.features import SCALERS, SCALER_OPTIONS print(SCALERS) g = graphistry.nodes(df) # set a scaling strategy for features and targets -- umap uses those and produces different results depending. g2 = g.umap(use_scaler='standard', use_scaler_target=None) # later if you want to scale new data, you can do so X, y = g2.transform(df, df, scaled=False) # unscaled transformer output # now scale with new settings X_scaled, y_scaled = g2.scale(X, y, use_scaler='minmax', use_scaler_target='kbins', n_bins=5) # fit some other pipeline clf.fit(X_scaled, y_scaled)
args:
;X: pd.DataFrame of features :y: pd.DataFrame of target features :kind: str, one of 'nodes' or 'edges' *args, **kwargs: passed to smart_scaler pipeline
- returns:
scaled X, y
- transform(df, ydf=None)#
Raw transform, no scaling.
- Parameters:
df (DataFrame)
ydf (DataFrame | None)
- transform_scaled(df, ydf=None, scaling_pipeline=None, scaling_pipeline_target=None)#
- class graphistry.feature_utils.FastMLB(mlb, in_column, out_columns)#
Bases:
object
- fit(X, y=None)#
- get_feature_names_in()#
- get_feature_names_out()#
- transform(df)#
- class graphistry.feature_utils.FeatureMixin(*args, **kwargs)#
Bases:
object
FeatureMixin for automatic featurization of nodes and edges DataFrames. Subclasses UMAPMixin for umap-ing of automatic features.
Usage:
g = graphistry.nodes(df, 'node_column') g2 = g.featurize()
or for edges,
g = graphistry.edges(df, 'src', 'dst') g2 = g.featurize(kind='edges')
or chain them for both nodes and edges,
g = graphistry.edges(edf, 'src', 'dst').nodes(ndf, 'node_column') g2 = g.featurize().featurize(kind='edges')
- featurize(kind='nodes', X=None, y=None, use_scaler=None, use_scaler_target=None, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=12, multilabel=False, embedding=False, use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3, min_words=4.5, model_name='paraphrase-MiniLM-L6-v2', impute=True, n_quantiles=100, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', similarity=None, categories='auto', keep_n_decimals=5, remove_node_column=True, inplace=False, feature_engine='auto', dbscan=False, min_dist=0.5, min_samples=1, memoize=True, verbose=False)#
Featurize Nodes or Edges of the underlying nodes/edges DataFrames.
- Parameters:
kind (str) – specify whether to featurize nodes or edges. Edge featurization includes a pairwise src-to-dst feature block using a MultiLabelBinarizer, with any other columns being treated the same way as with nodes featurization.
X (List[str] | str | DataFrame | None) – Optional input, default None. If symbolic, evaluated against self data based on kind. If None, will featurize all columns of DataFrame
y (List[str] | str | DataFrame | None) – Optional Target(s) columns or explicit DataFrame, default None
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None) – selects which scaler (and automatically imputes missing values using mean strategy) to scale the data. Please see scikits-learn documentation https://scikit-learn.org/stable/modules/preprocessing.html Here ‘standard’ corresponds to ‘StandardScaler’ in scikits.
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None) – selects which scaler to scale the target
cardinality_threshold (int) – skrub threshold on cardinality of categorical labels across columns. If value is greater than threshold, will run GapEncoder (a topic model) on column. If below, will one-hot_encode. Default 40.
cardinality_threshold_target (int) – similar to cardinality_threshold, but for target features. Default is set high (400), as targets generally want to be one-hot encoded, but sometimes it can be useful to use GapEncoder (ie, set threshold lower) to create regressive targets, especially when those targets are textual/softly categorical and have semantic meaning across different labels. Eg, suppose a column has fields like [‘Application Fraud’, ‘Other Statuses’, ‘Lost-Target scaling using/Stolen Fraud’, ‘Investigation Fraud’, …] the GapEncoder will concentrate the ‘Fraud’ labels together.
n_topics (int) – the number of topics to use in the GapEncoder if cardinality_thresholds is saturated. Default is 42, but good rule of thumb is to consult the Johnson-Lindenstrauss Lemma https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma or use the simplified random walk estimate => n_topics_lower_bound ~ (pi/2) * (N-documents)**(1/4)
n_topics_target (int) – the number of topics to use in the GapEncoder if cardinality_thresholds_target is saturated for the target(s). Default 12.
min_words (float) – sets threshold on how many words to consider in a textual column if it is to be considered in the text processing pipeline. Set this very high if you want any textual columns to bypass the transformer, in favor of GapEncoder (topic modeling). Set to 0 to force all named columns to be encoded as textual (embedding)
model_name (str) – Sentence Transformer model to use. Default Paraphrase model makes useful vectors, but at cost of encoding time. If faster encoding is needed, average_word_embeddings_komninos is useful and produces less semantically relevant vectors. Please see sentence_transformer (https://www.sbert.net/) library for all available models.
multilabel (bool) – if True, will encode a single target column composed of lists of lists as multilabel outputs. This only works with y=[‘a_single_col’], default False
embedding (bool) – If True, produces a random node embedding of size n_topics default, False. If no node features are provided, will produce random embeddings (for GNN models, for example)
use_ngrams (bool) – If True, will encode textual columns as TfIdf Vectors, default, False.
ngram_range (tuple) – if use_ngrams=True, can set ngram_range, eg: tuple = (1, 3)
max_df (float) – if use_ngrams=True, set max word frequency to consider in vocabulary eg: max_df = 0.2,
min_df (int) – if use_ngrams=True, set min word count to consider in vocabulary eg: min_df = 3 or 0.00001
categories (str | None) – Optional[str] in [“auto”, “k-means”, “most_frequent”], decides which category to select in Similarity Encoding, default ‘auto’
impute (bool) – Whether to impute missing values, default True
n_quantiles (int) – if use_scaler = ‘quantile’, sets the quantile bin size.
output_distribution (str) – if use_scaler = ‘quantile’, can return distribution as [“normal”, “uniform”]
quantile_range – if use_scaler = ‘robust’|’quantile’, sets the quantile range.
n_bins (int) – number of bins to use in kbins discretizer, default 10
encode (str) – encoding for KBinsDiscretizer, can be one of onehot, onehot-dense, ordinal, default ‘ordinal’
strategy (str) – strategy for KBinsDiscretizer, can be one of uniform, quantile, kmeans, default ‘quantile’
n_quantiles – if use_scaler = “quantile”, sets the number of quantiles, default=100
output_distribution – if use_scaler=”quantile”|”robust”, choose from [“normal”, “uniform”]
dbscan (bool) – whether to run DBSCAN, default False.
min_dist (float) – DBSCAN eps parameter, default 0.5.
min_samples (int) – DBSCAN min_samples parameter, default 5.
keep_n_decimals (int) – number of decimals to keep
remove_node_column (bool) – whether to remove node column so it is not featurized, default True.
inplace (bool) – whether to not return new graphistry instance or not, default False.
memoize (bool) – whether to store and reuse results across runs, default True.
similarity (str | None)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch', 'dirty_cat', 'auto'])
verbose (bool)
- Returns:
graphistry instance with new attributes set by the featurization process.
- featurize_or_get_edges_dataframe_if_X_is_None(X=None, y=None, use_scaler=None, use_scaler_target=None, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=7, multilabel=False, use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3, min_words=2.5, model_name='paraphrase-MiniLM-L6-v2', similarity=None, categories='auto', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5, feature_engine='pandas', reuse_if_existing=False, memoize=True, verbose=False)#
helper method gets edge feature and target matrix if X, y are not specified
- Parameters:
X (List[str] | str | DataFrame | None) – Data Matrix
y (List[str] | str | DataFrame | None) – target, default None
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
cardinality_threshold (int)
cardinality_threshold_target (int)
n_topics (int)
n_topics_target (int)
multilabel (bool)
use_ngrams (bool)
ngram_range (tuple)
max_df (float)
min_df (int)
min_words (float)
model_name (str)
similarity (str | None)
categories (str | None)
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
memoize (bool)
verbose (bool)
- Returns:
data X and y
- Return type:
Tuple[DataFrame, DataFrame | None, object]
- featurize_or_get_nodes_dataframe_if_X_is_None(X=None, y=None, use_scaler=None, use_scaler_target=None, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=7, multilabel=False, embedding=False, use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3, min_words=2.5, model_name='paraphrase-MiniLM-L6-v2', similarity=None, categories='auto', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5, remove_node_column=True, feature_engine='pandas', reuse_if_existing=False, memoize=True, verbose=False)#
helper method gets node feature and target matrix if X, y are not specified. if X, y are specified will set them as _node_target and _node_target attributes
- Parameters:
X (List[str] | str | DataFrame | None)
y (List[str] | str | DataFrame | None)
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
cardinality_threshold (int)
cardinality_threshold_target (int)
n_topics (int)
n_topics_target (int)
multilabel (bool)
embedding (bool)
use_ngrams (bool)
ngram_range (tuple)
max_df (float)
min_df (int)
min_words (float)
model_name (str)
similarity (str | None)
categories (str | None)
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
remove_node_column (bool)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
memoize (bool)
verbose (bool)
- Return type:
Tuple[DataFrame, DataFrame, object]
- get_matrix(columns=None, kind='nodes', target=False)#
Returns feature matrix, and if columns are specified, returns matrix with only the columns that contain the string column_part in their name.`X = g.get_matrix([‘feature1’, ‘feature2’])` will retrieve a feature matrix with only the columns that contain the string feature1 or feature2 in their name. Most useful for topic modeling, where the column names are of the form topic_0: descriptor, topic_1: descriptor, etc. Can retrieve unique columns in original dataframe, or actual topic features like [ip_part, shoes, preference_x, etc]. Powerful way to retrieve features from a featurized graph by column or (top) features of interest.
Example:
# get the full feature matrices X = g.get_matrix() y = g.get_matrix(target=True) # get subset of features, or topics, given topic model encoding X = g2.get_matrix(['172', 'percent']) X.columns => ['ip_172.56.104.67', 'ip_172.58.129.252', 'item_percent'] # or in targets y = g2.get_matrix(['total', 'percent'], target=True) y.columns => ['basket_price_total', 'conversion_percent', 'CTR_percent', 'CVR_percent'] # not as useful for sbert features.
- Caveats:
if you have a column name that is a substring of another column name, you may get unexpected results.
- Args:
- columns (Union[List, str]):
list of column names or a single column name that may exist in columns of the feature matrix. If None, returns original feature matrix
- kind (str, optional):
Node or Edge features. Defaults to ‘nodes’.
- target (bool, optional):
If True, returns the target matrix. Defaults to False.
- Returns:
pd.DataFrame: feature matrix with only the columns that contain the string column_part in their name.
- Parameters:
columns (List | str | None)
kind (Literal['nodes', 'edges'])
target (bool)
- Return type:
DataFrame
- scale(df=None, y=None, kind='nodes', use_scaler=None, use_scaler_target=None, impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5, return_scalers=False)#
Scale data using the same scalers as used in the featurization step.
Example
g = graphistry.nodes(df) X, y = g.featurize().scale(kind='nodes', use_scaler='robust', use_scaler_target='kbins', n_bins=3) # or g = graphistry.nodes(df) # set a scaling strategy for features and targets -- umap uses those and produces different results depending. g2 = g.umap(use_scaler='standard', use_scaler_target=None) # later if you want to scale new data, you can do so X, y = g2.transform(df, df, scale=False) X_scaled, y_scaled = g2.scale(X, y, use_scaler='minmax', use_scaler_target='kbins', n_bins=5) # fit some other pipeline clf.fit(X_scaled, y_scaled)
Args:
- df:
pd.DataFrame, raw data to transform, if None, will use data from featurization fit
- y:
pd.DataFrame, optional target data
- kind:
str, one of nodes, edges
- use_scaler:
Scaling transformer
- use_scaler_target:
Scaling transformer on target
- impute:
bool, if True, will impute missing values
- n_quantiles:
int, number of quantiles to use for quantile scaler
- output_distribution:
str, one of normal, uniform, lognormal
- quantile_range:
tuple, range of quantiles to use for quantile scaler
- n_bins:
int, number of bins to use for KBinsDiscretizer
- encode:
str, one of ordinal, onehot, onehot-dense, binary
- strategy:
str, one of uniform, quantile, kmeans
- keep_n_decimals:
int, number of decimals to keep after scaling
- return_scalers:
bool, if True, will return the scalers used to scale the data
Returns:
(X, y) transformed data if return_graph is False or a graph with inferred edges if return_graph is True, or (X, y, scaler, scaler_target) if return_scalers is True
- Parameters:
df (DataFrame | None)
y (DataFrame | None)
kind (str)
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
return_scalers (bool)
- transform(df, y=None, kind='nodes', min_dist='auto', n_neighbors=7, merge_policy=False, sample=None, return_graph=True, scaled=True, verbose=False)#
Transform new data and append to existing graph, or return dataframes
args:
- df:
pd.DataFrame, raw data to transform
- ydf:
pd.DataFrame, optional
- kind:
str # one of nodes, edges
- return_graph:
bool, if True, will return a graph with inferred edges.
- merge_policy:
bool, if True, adds batch to existing graph nodes via nearest neighbors. If False, will infer edges only between nodes in the batch, default False
- min_dist:
float, if return_graph is True, will use this value in NN search, or ‘auto’ to infer a good value. min_dist represents the maximum distance between two samples for one to be considered as in the neighborhood of the other.
- sample:
int, if return_graph is True, will use sample edges of existing graph to fill out the new graph
- n_neighbors:
int, if return_graph is True, will use this value for n_neighbors in Nearest Neighbors search
- scaled:
bool, if True, will use scaled transformation of data set during featurization, default True
- verbose:
bool, if True, will print metadata about the graph construction, default False
Returns:
X, y: pd.DataFrame, transformed data if return_graph is False or a graphistry Plottable with inferred edges if return_graph is True
- Parameters:
df (DataFrame)
y (DataFrame | None)
kind (str)
min_dist (str | float | int)
n_neighbors (int)
merge_policy (bool)
sample (int | None)
return_graph (bool)
scaled (bool)
verbose (bool)
- Return type:
Tuple[DataFrame, DataFrame] | Plottable
- class graphistry.feature_utils.callThrough(x)#
Bases:
object
- graphistry.feature_utils.check_if_textual_column(df, col, confidence=0.35, min_words=2.5)#
Checks if col column of df is textual or not using basic heuristics
- Parameters:
df (DataFrame) – DataFrame
col (str) – column name
confidence (float) – threshold float value between 0 and 1. If column col has confidence more elements as type str it will pass it onto next stage of evaluation. Default 0.35
min_words (float) – mean minimum words threshold. If mean words across col is greater than this, it is deemed textual. Default 2.5
- Returns:
bool, whether column is textual or not
- Return type:
bool
- graphistry.feature_utils.concat_text(df, text_cols)#
- graphistry.feature_utils.drop_duplicates_with_warning(df)#
- Parameters:
df (DataFrame)
- Return type:
DataFrame
- graphistry.feature_utils.encode_edges(edf, src, dst, mlb, fit=False)#
edge encoder – creates multilabelBinarizer on edge pairs.
- Args:
edf (pd.DataFrame): edge dataframe src (string): source column dst (string): destination column mlb (sklearn): multilabelBinarizer fit (bool, optional): If true, fits multilabelBinarizer. Defaults to False.
- Returns:
tuple: pd.DataFrame, multilabelBinarizer
- graphistry.feature_utils.encode_multi_target(ydf, mlb=None)#
- graphistry.feature_utils.encode_textual(df, min_words=2.5, model_name='paraphrase-MiniLM-L6-v2', use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3)#
- Parameters:
df (DataFrame)
min_words (float)
model_name (str)
use_ngrams (bool)
ngram_range (tuple)
max_df (float)
min_df (int)
- Return type:
Tuple[DataFrame, List, Any]
- graphistry.feature_utils.features_without_target(df, y=None)#
Checks if y DataFrame column name is in df, and removes it from df if so
- Parameters:
df (DataFrame) – model DataFrame
y (List | str | DataFrame | None) – target DataFrame
- Returns:
DataFrames of model and target
- Return type:
DataFrame
- graphistry.feature_utils.find_bad_set_columns(df, bad_set=['[]'])#
Finds columns that if not coerced to strings, will break processors.
- Parameters:
df (DataFrame) – DataFrame
bad_set (List) – List of strings to look for.
- Returns:
list
- graphistry.feature_utils.fit_pipeline(X, transformer, keep_n_decimals=5)#
Helper to fit DataFrame over transformer pipeline. Rounds resulting matrix X by keep_n_digits if not 0, which helps for when transformer pipeline is scaling or imputer which sometime introduce small negative numbers, and umap metrics like Hellinger need to be positive :param X: DataFrame to transform. :param transformer: Pipeline object to fit and transform :param keep_n_decimals: Int of how many decimal places to keep in rounded transformed data
- Parameters:
X (DataFrame)
keep_n_decimals (int)
- Return type:
DataFrame
- graphistry.feature_utils.get_cardinality_ratio(df)#
Calculates the ratio of unique values to total number of rows of DataFrame
- Parameters:
df (DataFrame) – DataFrame
- graphistry.feature_utils.get_dataframe_by_column_dtype(df, include=None, exclude=None)#
- graphistry.feature_utils.get_matrix_by_column_part(X, column_part)#
Get the feature matrix by column part existing in column names.
- Parameters:
X (DataFrame)
column_part (str)
- Return type:
DataFrame
- graphistry.feature_utils.get_matrix_by_column_parts(X, column_parts)#
Get the feature matrix by column parts list existing in column names.
- Parameters:
X (DataFrame)
column_parts (list | str | None)
- Return type:
DataFrame
- graphistry.feature_utils.get_numeric_transformers(ndf, y=None)#
- graphistry.feature_utils.get_preprocessing_pipeline(use_scaler='robust', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='quantile')#
Helper function for imputing and scaling np.ndarray data using different scaling transformers.
- Parameters:
X – np.ndarray
impute (bool) – whether to run imputing or not
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile']) – Selects scaling transformer
n_quantiles (int) – if use_scaler = ‘quantile’, sets the quantile bin size.
output_distribution (str) – if use_scaler = ‘quantile’, can return distribution as [“normal”, “uniform”]
quantile_range – if use_scaler = ‘robust’/’quantile’, sets the quantile range.
n_bins (int) – number of bins to use in kbins discretizer
encode (str) – encoding for KBinsDiscretizer, can be one of onehot, onehot-dense, ordinal, default ‘ordinal’
strategy (str) – strategy for KBinsDiscretizer, can be one of uniform, quantile, kmeans, default ‘quantile’
- Returns:
scaled array, imputer instances or None, scaler instance or None
- Return type:
Any
- graphistry.feature_utils.get_text_preprocessor(ngram_range=(1, 3), max_df=0.2, min_df=3)#
- graphistry.feature_utils.get_textual_columns(df, min_words=2.5)#
Collects columns from df that it deems are textual.
- Parameters:
df (DataFrame) – DataFrame
min_words (float)
- Returns:
list of columns names
- Return type:
List
- graphistry.feature_utils.group_columns_by_dtypes(df, verbose=True)#
- Parameters:
df (DataFrame)
verbose (bool)
- Return type:
Dict
- graphistry.feature_utils.identity(x)#
- graphistry.feature_utils.impute_and_scale_df(df, use_scaler='robust', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5)#
- Parameters:
df (DataFrame)
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'])
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
- Return type:
Tuple[DataFrame, Any]
- graphistry.feature_utils.is_cudf_df(df)#
- Parameters:
df (Any)
- Return type:
bool
- graphistry.feature_utils.is_cudf_s(s)#
- Parameters:
s (Any)
- Return type:
bool
- graphistry.feature_utils.is_dataframe_all_numeric(df)#
- Parameters:
df (DataFrame)
- Return type:
bool
- graphistry.feature_utils.make_array(X)#
- graphistry.feature_utils.normalize_X_y(X, y, feature_names_in=None, target_names_in=None)#
Prepare for most finnicky featurizers: drop duplicates, and remove targets from data
Warns on fixed violations
- Parameters:
X (DataFrame)
y (DataFrame)
feature_names_in (Index | None)
target_names_in (Index | None)
- Return type:
Tuple[DataFrame, DataFrame]
- graphistry.feature_utils.passthrough_df_cols(df, columns)#
- graphistry.feature_utils.process_dirty_dataframes(ndf, y, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=7, similarity=None, categories='auto', multilabel=False, feature_engine='pandas')#
skrub encoder for record level data. Will automatically turn inhomogeneous dataframe into matrix using smart conversion tricks.
- Parameters:
ndf (DataFrame) – node DataFrame
y (DataFrame | None) – target DataFrame or series
cardinality_threshold (int) – For ndf columns, below this threshold, encoder is OneHot, above, it is GapEncoder
cardinality_threshold_target (int) – For target columns, below this threshold, encoder is OneHot, above, it is GapEncoder
n_topics (int) – number of topics for GapEncoder, default 42
similarity (str | None) – one of ‘ngram’, ‘levenshtein-ratio’, ‘jaro’, or’jaro-winkler’}) – The type of pairwise string similarity to use. If None or False, uses a TableVectorizer
n_topics_target (int)
categories (str | None)
multilabel (bool)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
- Returns:
Encoded data matrix and target (if not None), the data encoder, and the label encoder.
- Return type:
Tuple[DataFrame, DataFrame | None, Any, Any]
- graphistry.feature_utils.process_edge_dataframes(edf, y, src, dst, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=7, use_scaler=None, use_scaler_target=None, multilabel=False, use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3, min_words=2.5, model_name='paraphrase-MiniLM-L6-v2', similarity=None, categories='auto', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5, feature_engine='pandas')#
Custom Edge-record encoder. Uses a MultiLabelBinarizer to generate a src/dst vector and then process_textual_or_other_dataframes that encodes any other data present in edf, textual or not.
- Parameters:
edf (DataFrame) – pandas DataFrame of edge features
y (DataFrame) – pandas DataFrame of edge labels
src (str) – source column to select in edf
dst (str) – destination column to select in edf
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None) – Scaling transformer
use_scaler_target' – Scaling transformer for target
cardinality_threshold (int)
cardinality_threshold_target (int)
n_topics (int)
n_topics_target (int)
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
multilabel (bool)
use_ngrams (bool)
ngram_range (tuple)
max_df (float)
min_df (int)
min_words (float)
model_name (str)
similarity (str | None)
categories (str | None)
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
- Returns:
Encoded data matrix and target (if not None), the data encoders, and the label encoder.
- Return type:
Tuple[DataFrame, DataFrame, DataFrame, DataFrame, List[Any], Any, Any | None, Any | None, Any, List[str]]
- graphistry.feature_utils.process_nodes_dataframes(df, y, cardinality_threshold=40, cardinality_threshold_target=400, n_topics=42, n_topics_target=7, use_scaler='robust', use_scaler_target='kbins', multilabel=False, embedding=False, use_ngrams=False, ngram_range=(1, 3), max_df=0.2, min_df=3, min_words=2.5, model_name='paraphrase-MiniLM-L6-v2', similarity=None, categories='auto', impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5, feature_engine='pandas')#
Automatic Deep Learning Embedding/ngrams of Textual Features, with the rest of the columns taken care of by skrub
- Parameters:
df (DataFrame) – pandas DataFrame of data
y (DataFrame) – pandas DataFrame of targets
n_topics (int) – number of topics in Gap Encoder
n_topics_target (int) – number of topics in Gap Encoder for target
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile']) – Scaling transformer
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile']) – Scaling transformer for target
confidence – Number between 0 and 1, will pass column for textual processing if total entries are string like in a column and above this relative threshold.
min_words (float) – Sets the threshold for average number of words to include column for textual sentence encoding. Lower values means that columns will be labeled textual and sent to sentence-encoder. Set to 0 to force named columns as textual.
model_name (str) – SentenceTransformer model name. See available list at https://www.sbert.net/docs/pretrained_models. html#sentence-embedding-models
cardinality_threshold (int)
cardinality_threshold_target (int)
multilabel (bool)
embedding (bool)
use_ngrams (bool)
ngram_range (tuple)
max_df (float)
min_df (int)
similarity (str | None)
categories (str | None)
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
- Returns:
X_enc, y_enc, data_encoder, label_encoder, scaling_pipeline, scaling_pipeline_target, text_model, text_cols,
- Return type:
Tuple[DataFrame, Any, DataFrame, Any, Any, Any, Any | None, Any | None, Any, List[str]]
- graphistry.feature_utils.remove_internal_namespace_if_present(df)#
Some tranformations below add columns to the DataFrame, this method removes them before featurization Will not drop if suffix is added during UMAP-ing
- Parameters:
df (DataFrame) – DataFrame
- Returns:
DataFrame with dropped columns in reserved namespace
- Return type:
DataFrame
- graphistry.feature_utils.remove_node_column_from_symbolic(X_symbolic, node)#
- graphistry.feature_utils.resolve_X(df, X)#
- Parameters:
df (DataFrame | None)
X (List[str] | str | DataFrame | None)
- Return type:
DataFrame
- graphistry.feature_utils.resolve_feature_engine(feature_engine)#
- Parameters:
feature_engine (Literal['none', 'pandas', 'skrub', 'torch', 'dirty_cat', 'auto'])
- Return type:
Literal[‘none’, ‘pandas’, ‘skrub’, ‘torch’]
- graphistry.feature_utils.resolve_scaler(use_scaler, feature_engine)#
- Parameters:
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
- Return type:
Literal[‘none’, ‘kbins’, ‘standard’, ‘robust’, ‘minmax’, ‘quantile’]
- graphistry.feature_utils.resolve_scaler_target(use_scaler_target, feature_engine, multilabel)#
- Parameters:
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'] | None)
feature_engine (Literal['none', 'pandas', 'skrub', 'torch'])
multilabel (bool)
- Return type:
Literal[‘none’, ‘kbins’, ‘standard’, ‘robust’, ‘minmax’, ‘quantile’]
- graphistry.feature_utils.resolve_y(df, y)#
- Parameters:
df (DataFrame | None)
y (List[str] | str | DataFrame | None)
- Return type:
DataFrame
- graphistry.feature_utils.reuse_featurization(g, memoize, metadata)#
- Parameters:
g (Plottable)
memoize (bool)
metadata (Any)
- graphistry.feature_utils.safe_divide(a, b)#
- graphistry.feature_utils.set_currency_to_float(df, col, return_float=True)#
- Parameters:
df (DataFrame)
col (str)
return_float (bool)
- graphistry.feature_utils.set_to_bool(df, col, value)#
- Parameters:
df (DataFrame)
col (str)
value (Any)
- graphistry.feature_utils.set_to_datetime(df, cols, new_col)#
- Parameters:
df (DataFrame)
cols (List)
new_col (str)
- graphistry.feature_utils.set_to_numeric(df, cols, fill_value=0.0)#
- Parameters:
df (DataFrame)
cols (List)
fill_value (float)
- graphistry.feature_utils.smart_scaler(X_enc, y_enc, use_scaler, use_scaler_target, impute=True, n_quantiles=10, output_distribution='normal', quantile_range=(25, 75), n_bins=10, encode='ordinal', strategy='uniform', keep_n_decimals=5)#
- Parameters:
use_scaler (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'])
use_scaler_target (Literal['none', 'kbins', 'standard', 'robust', 'minmax', 'quantile'])
impute (bool)
n_quantiles (int)
output_distribution (str)
n_bins (int)
encode (str)
strategy (str)
keep_n_decimals (int)
- graphistry.feature_utils.transform(df, ydf, res, kind, src, dst, feature_names_in, target_names_in)#
- Parameters:
df (DataFrame)
ydf (DataFrame | None)
res (List)
kind (str)
feature_names_in (Index)
target_names_in (Index)
- Return type:
Tuple[DataFrame, DataFrame]
- graphistry.feature_utils.transform_dirty(df, data_encoder, name='')#
- Parameters:
df (DataFrame)
data_encoder (Any)
name (str)
- Return type:
DataFrame
- graphistry.feature_utils.transform_text(df, text_model, text_cols)#
- Parameters:
df (DataFrame)
text_model (Any)
text_cols (List | str)
- Return type:
DataFrame
- graphistry.feature_utils.where_is_currency_column(df, col)#
- Parameters:
df (DataFrame)
col (str)
- graphistry.feature_utils.FeatureEngine#
alias of
Literal
[‘none’, ‘pandas’, ‘skrub’, ‘torch’, ‘dirty_cat’, ‘auto’]
- graphistry.feature_utils.FeatureEngineConcrete#
alias of
Literal
[‘none’, ‘pandas’, ‘skrub’, ‘torch’]
UMAP#
- class graphistry.umap_utils.UMAPMixin(*args, **kwargs)#
Bases:
object
UMAP Mixin for automagic UMAPing
- filter_weighted_edges(scale=1.0, index_to_nodes_dict=None, inplace=False, kind='nodes')#
Filter edges based on _weighted_edges_df (ex: from .umap())
- Parameters:
scale (float)
index_to_nodes_dict (Dict | None)
inplace (bool)
kind (str)
- transform_umap(df, y=None, kind='nodes', min_dist='auto', n_neighbors=7, merge_policy=False, sample=None, return_graph=True, fit_umap_embedding=True, umap_transform_kwargs={})#
Transforms data into UMAP embedding
- Args:
- df:
Dataframe to transform
- y:
Target column
- kind:
One of nodes or edges
- min_dist:
Epsilon for including neighbors in infer_graph
- n_neighbors:
Number of neighbors to use for contextualization
- merge_policy:
if True, use previous graph, adding new batch to existing graph’s neighbors useful to contextualize new data against existing graph. If False, sample is irrelevant.
sample: Sample number of existing graph’s neighbors to use for contextualization – helps make denser graphs return_graph: Whether to return a graph or just the embeddings fit_umap_embedding: Whether to infer graph from the UMAP embedding on the new data, default True
- Parameters:
df (DataFrame)
y (DataFrame | None)
kind (Literal['nodes', 'edges'])
min_dist (str | float | int)
n_neighbors (int)
merge_policy (bool)
sample (int | None)
return_graph (bool)
fit_umap_embedding (bool)
umap_transform_kwargs (Dict[str, Any])
- Return type:
Tuple[DataFrame, DataFrame, DataFrame] | Plottable
- umap(X=None, y=None, kind='nodes', scale=1.0, n_neighbors=12, min_dist=0.1, spread=0.5, local_connectivity=1, repulsion_strength=1, negative_sample_rate=5, n_components=2, metric='euclidean', suffix='', play=0, encode_position=True, encode_weight=True, dbscan=False, engine='auto', feature_engine='auto', inplace=False, memoize=True, umap_kwargs={}, umap_fit_kwargs={}, umap_transform_kwargs={}, **featurize_kwargs)#
UMAP the featurized nodes or edges data, or pass in your own X, y (optional) dataframes of values
Example
>>> import graphistry >>> g = graphistry.nodes(pd.DataFrame({'node': [0,1,2], 'data': [1,2,3], 'meta': ['a', 'b', 'c']})) >>> g2 = g.umap(n_components=3, spread=1.0, min_dist=0.1, n_neighbors=12, negative_sample_rate=5, local_connectivity=1, repulsion_strength=1.0, metric='euclidean', suffix='', play=0, encode_position=True, encode_weight=True, dbscan=False, engine='auto', feature_engine='auto', inplace=False, memoize=True) >>> g2.plot()
Parameters
- X:
either a dataframe ndarray of features, or column names to featurize
- y:
either an dataframe ndarray of targets, or column names to featurize targets
- kind:
nodes or edges or None. If None, expects explicit X, y (optional) matrices, and will Not associate them to nodes or edges. If X, y (optional) is given, with kind = [nodes, edges], it will associate new matrices to nodes or edges attributes.
- scale:
multiplicative scale for pruning weighted edge DataFrame gotten from UMAP, between [0, ..) with high end meaning keep all edges
- n_neighbors:
UMAP number of nearest neighbors to include for UMAP connectivity, lower makes more compact layouts. Minimum 2
- min_dist:
UMAP float between 0 and 1, lower makes more compact layouts.
- spread:
UMAP spread of values for relaxation
- local_connectivity:
UMAP connectivity parameter
- repulsion_strength:
UMAP repulsion strength
- negative_sample_rate:
UMAP negative sampling rate
- n_components:
number of components in the UMAP projection, default 2
- metric:
UMAP metric, default ‘euclidean’. see (UMAP-LEARN)[https://umap-learn.readthedocs.io/ en/latest/parameters.html] documentation for more.
- suffix:
optional suffix to add to x, y attributes of umap.
- play:
Graphistry play parameter, default 0, how much to evolve the network during clustering. 0 preserves the original UMAP layout.
- encode_weight:
if True, will set new edges_df from implicit UMAP, default True.
- encode_position:
whether to set default plotting bindings – positions x,y from umap for .plot(), default True
- dbscan:
whether to run DBSCAN on the UMAP embedding, default False.
- engine:
selects which engine to use to calculate UMAP: default “auto” will use cuML if available, otherwise UMAP-LEARN.
- feature_engine:
How to encode data (“none”, “auto”, “pandas”, “skrub”, “torch”)
- inplace:
bool = False, whether to modify the current object, default False. when False, returns a new object, useful for chaining in a functional paradigm.
- memoize:
whether to memoize the results of this method, default True.
- umap_kwargs:
Optional kwargs to pass to underlying UMAP library constructor
- umap_fit_kwargs:
Optional kwargs to pass to underlying UMAP fit method, including fit part of fit_transform
- umap_transform_kwargs:
Optional kwargs to pass to underlying UMAP transform method, including transform part of fit_transform
- featurize_kwargs:
Optional kwargs to pass to .featurize()
- Returns:
self, with attributes set with new data
- Parameters:
X (List[str] | str | DataFrame | None)
y (List[str] | str | DataFrame | None)
kind (str)
scale (float)
n_neighbors (int)
min_dist (float)
spread (float)
local_connectivity (int)
repulsion_strength (float)
negative_sample_rate (int)
n_components (int)
metric (str)
suffix (str)
play (int | None)
encode_position (bool)
encode_weight (bool)
dbscan (bool)
engine (Literal['cuml', 'umap_learn', 'auto'])
feature_engine (str)
inplace (bool)
memoize (bool)
umap_kwargs (Dict[str, Any])
umap_fit_kwargs (Dict[str, Any])
umap_transform_kwargs (Dict[str, Any])
- umap_fit(X, y=None, umap_fit_kwargs={})#
- Parameters:
X (DataFrame)
y (DataFrame | None)
umap_fit_kwargs (Dict[str, Any])
- umap_lazy_init(res, n_neighbors=12, min_dist=0.1, spread=0.5, local_connectivity=1, repulsion_strength=1, negative_sample_rate=5, n_components=2, metric='euclidean', engine='auto', suffix='', umap_kwargs={}, umap_fit_kwargs={}, umap_transform_kwargs={})#
- Parameters:
res (Plottable)
n_neighbors (int)
min_dist (float)
spread (float)
local_connectivity (int)
repulsion_strength (float)
negative_sample_rate (int)
n_components (int)
metric (str)
engine (Literal['cuml', 'umap_learn', 'auto'])
suffix (str)
umap_kwargs (Dict[str, Any])
umap_fit_kwargs (Dict[str, Any])
umap_transform_kwargs (Dict[str, Any])
- graphistry.umap_utils.assert_imported()#
- graphistry.umap_utils.assert_imported_cuml()#
- graphistry.umap_utils.is_legacy_cuml()#
- graphistry.umap_utils.make_safe_umap_gpu_dataframes(X, y, engine)#
- Parameters:
X (DataFrame)
y (DataFrame | None)
engine (Literal['cuml', 'umap_learn'])
- Return type:
Tuple[DataFrame, DataFrame | None]
- graphistry.umap_utils.prune_weighted_edges_df_and_relabel_nodes(wdf, scale=0.1, index_to_nodes_dict=None)#
Prune the weighted edge DataFrame so to return high fidelity similarity scores.
- Parameters:
wdf (DataFrame | Any) – weighted edge DataFrame gotten via UMAP
scale (float) – lower values means less edges > (max - scale * std)
index_to_nodes_dict (Dict | None) – dict of index to node name; remap src/dst values if provided
- Returns:
pd.DataFrame
- Return type:
DataFrame
- graphistry.umap_utils.resolve_umap_engine(engine)#
- Parameters:
engine (Literal['cuml', 'umap_learn', 'auto'])
- Return type:
Literal[‘cuml’, ‘umap_learn’]
- graphistry.umap_utils.reuse_umap(g, memoize, metadata)#
- graphistry.umap_utils.umap_graph_to_weighted_edges(umap_graph, engine, is_legacy, cfg=<module 'graphistry.constants' from '/home/docs/checkouts/readthedocs.org/user_builds/pygraphistry/checkouts/latest/graphistry/constants.py'>)#
- Parameters:
engine (Literal['cuml', 'umap_learn'])
- graphistry.umap_utils.umap_model_to_engine(v)#
- Parameters:
v (Any)
- Return type:
Literal[‘cuml’, ‘umap_learn’] | None
Semantic Search#
- class graphistry.text_utils.SearchToGraphMixin(*args, **kwargs)#
Bases:
object
- assert_features_line_up_with_nodes()#
- assert_fitted()#
- build_index(angular=False, n_trees=None)#
- classmethod load_search_instance(savepath)#
- save_search_instance(savepath)#
- search(query, cols=None, thresh=5000, fuzzy=True, top_n=10)#
Natural language query over nodes that returns a dataframe of results sorted by relevance column “distance”.
If node data is not yet feature-encoded (and explicit edges are given), run automatic feature engineering:
g2 = g.featurize(kind='nodes', X=['text_col_1', ..], min_words=0 # forces all named columns are textually encoded )
If edges do not yet exist, generate them via
g2 = g.umap(kind='nodes', X=['text_col_1', ..], min_words=0 # forces all named columns are textually encoded )
If an index is not yet built, it is generated g2.build_index() on the fly at search time. Otherwise, can set g2.build_index() to build it ahead of time.
- Args:
- query (str):
natural language query.
- cols (list or str, optional):
if fuzzy=False, select which column to query. Defaults to None since fuzzy=True by defaul.
- thresh (float, optional):
distance threshold from query vector to returned results. Defaults to 5000, set large just in case, but could be as low as 10.
- fuzzy (bool, optional):
if True, uses embedding + annoy index for recall, otherwise does string matching over given cols Defaults to True.
- top_n (int, optional):
how many results to return. Defaults to 100.
- Returns:
pd.DataFrame, vector_encoding_of_query: rank ordered dataframe of results matching query
vector encoding of query via given transformer/ngrams model if fuzzy=True else None
- Parameters:
query (str)
thresh (float)
fuzzy (bool)
top_n (int)
- search_graph(query, scale=0.5, top_n=100, thresh=5000, broader=False, inplace=False)#
- Input a natural language query and return a graph of results.
See help(g.search) for more information
- Args:
- query (str):
query input eg “coding best practices”
- scale (float, optional):
edge weigh threshold, Defaults to 0.5.
- top_n (int, optional):
how many results to return. Defaults to 100.
- thresh (float, optional):
distance threshold from query vector to returned results. Defaults to 5000, set large just in case, but could be as low as 10.
- broader (bool, optional):
if True, will retrieve entities connected via an edge that were not necessarily bubbled up in the results_dataframe. Defaults to False.
- inplace (bool, optional):
whether to return new instance (default) or mutate self. Defaults to False.
- Returns:
graphistry Instance: g
- Parameters:
query (str)
scale (float)
top_n (int)
thresh (float)
broader (bool)
inplace (bool)
DBSCAN#
- class graphistry.compute.cluster.ClusterMixin(*args, **kwargs)#
Bases:
object
- dbscan(min_dist=0.2, min_samples=1, cols=None, kind='nodes', fit_umap_embedding=True, target=False, verbose=False, engine_dbscan='auto', *args, **kwargs)#
- DBSCAN clustering on cpu or gpu infered automatically. Adds a _dbscan column to nodes or edges.
NOTE: g.transform_dbscan(..) currently unsupported on GPU.
Saves model as g._dbscan_nodes or g._dbscan_edges
Examples:
g = graphistry.edges(edf, 'src', 'dst').nodes(ndf, 'node') # cluster by UMAP embeddings kind = 'nodes' | 'edges' g2 = g.umap(kind=kind).dbscan(kind=kind) print(g2._nodes['_dbscan']) | print(g2._edges['_dbscan']) # dbscan in umap or featurize API g2 = g.umap(dbscan=True, min_dist=1.2, min_samples=2, **kwargs) # or, here dbscan is infered from features, not umap embeddings g2 = g.featurize(dbscan=True, min_dist=1.2, min_samples=2, **kwargs) # and via chaining, g2 = g.umap().dbscan(min_dist=1.2, min_samples=2, **kwargs) # cluster by feature embeddings g2 = g.featurize().dbscan(**kwargs) # cluster by a given set of feature column attributes, or with target=True g2 = g.featurize().dbscan(cols=['ip_172', 'location', 'alert'], target=False, **kwargs) # equivalent to above (ie, cols != None and umap=True will still use features dataframe, rather than UMAP embeddings) g2 = g.umap().dbscan(cols=['ip_172', 'location', 'alert'], umap=True | False, **kwargs) g2.plot() # color by `_dbscan` column
- Useful:
Enriching the graph with cluster labels from UMAP is useful for visualizing clusters in the graph by color, size, etc, as well as assessing metrics per cluster, e.g. graphistry/pygraphistry
- Args:
- min_dist float:
The maximum distance between two samples for them to be considered as in the same neighborhood.
- kind str:
‘nodes’ or ‘edges’
- cols:
list of columns to use for clustering given g.featurize has been run, nice way to slice features or targets by fragments of interest, e.g. [‘ip_172’, ‘location’, ‘ssh’, ‘warnings’]
- fit_umap_embedding bool:
whether to use UMAP embeddings or features dataframe to cluster DBSCAN
- min_samples:
The number of samples in a neighborhood for a point to be considered as a core point. This includes the point itself.
- target:
whether to use the target column as the clustering feature
- Parameters:
min_dist (float)
min_samples (int)
cols (List | str | None)
kind (Literal['nodes', 'edges'])
fit_umap_embedding (bool)
target (bool)
verbose (bool)
engine_dbscan (Literal['cuml', 'sklearn', 'auto'])
- transform_dbscan(df, y=None, min_dist='auto', infer_umap_embedding=False, sample=None, n_neighbors=None, kind='nodes', return_graph=True, verbose=False)#
Transforms a minibatch dataframe to one with a new column ‘_dbscan’ containing the DBSCAN cluster labels on the minibatch and generates a graph with the minibatch and the original graph, with edges between the minibatch and the original graph inferred from the umap embedding or features dataframe. Graph nodes | edges will be colored by ‘_dbscan’ column.
Examples:
fit: g = graphistry.edges(edf, 'src', 'dst').nodes(ndf, 'node') g2 = g.featurize().dbscan() predict: :: emb, X, _, ndf = g2.transform_dbscan(ndf, return_graph=False) # or g3 = g2.transform_dbscan(ndf, return_graph=True) g3.plot()
likewise for umap:
fit: g = graphistry.edges(edf, 'src', 'dst').nodes(ndf, 'node') g2 = g.umap(X=.., y=..).dbscan() predict: :: emb, X, y, ndf = g2.transform_dbscan(ndf, ndf, return_graph=False) # or g3 = g2.transform_dbscan(ndf, ndf, return_graph=True) g3.plot()
- Args:
- df:
dataframe to transform
- y:
optional labels dataframe
- min_dist:
The maximum distance between two samples for them to be considered as in the same neighborhood. smaller values will result in less edges between the minibatch and the original graph. Default ‘auto’, infers min_dist from the mean distance and std of new points to the original graph
- fit_umap_embedding:
whether to use UMAP embeddings or features dataframe when inferring edges between the minibatch and the original graph. Default False, uses the features dataframe
- sample:
number of samples to use when inferring edges between the minibatch and the original graph, if None, will only use closest point to the minibatch. If greater than 0, will sample the closest sample points in existing graph to pull in more edges. Default None
- kind:
‘nodes’ or ‘edges’
- return_graph:
whether to return a graph or the (emb, X, y, minibatch df enriched with DBSCAN labels), default True infered graph supports kind=’nodes’ only.
- verbose:
whether to print out progress, default False
- Parameters:
df (DataFrame)
y (DataFrame | None)
min_dist (float | str)
infer_umap_embedding (bool)
sample (int | None)
n_neighbors (int | None)
kind (str)
return_graph (bool)
verbose (bool)
- graphistry.compute.cluster.dbscan_fit_inplace(res, dbscan, kind='nodes', cols=None, use_umap_embedding=True, target=False, verbose=False)#
- Fits clustering on UMAP embeddings if umap is True, otherwise on the features dataframe
or target dataframe if target is True.
- Sets:
res._dbscan_edges or res._dbscan_nodes to the DBSCAN model
res._edges or res._nodes gains column _dbscan
- Args:
- res:
graphistry graph
- kind:
‘nodes’ or ‘edges’
- cols:
list of columns to use for clustering given g.featurize has been run
- use_umap_embedding:
whether to use UMAP embeddings or features dataframe for clustering (default: True)
- target:
whether to use the target dataframe or features dataframe (typically False, for features)
- Parameters:
res (Plottable)
dbscan (Any)
kind (Literal['nodes', 'edges'])
cols (List | str | None)
use_umap_embedding (bool)
target (bool)
verbose (bool)
- Return type:
None
- graphistry.compute.cluster.dbscan_predict_cuml(X, model)#
- Parameters:
X (Any)
model (Any)
- Return type:
Any
- graphistry.compute.cluster.dbscan_predict_sklearn(X, model)#
DBSCAN has no predict per se, so we reverse engineer one here from https://stackoverflow.com/questions/27822752/scikit-learn-predicting-new-points-with-dbscan
- Parameters:
X (DataFrame)
model (Any)
- Return type:
ndarray
- graphistry.compute.cluster.get_model_matrix(g, kind, cols, umap, target)#
Allows for a single function to get the model matrix for both nodes and edges as well as targets, embeddings, and features
- Args:
- g:
graphistry graph
- kind:
‘nodes’ or ‘edges’
- cols:
list of columns to use for clustering given g.featurize has been run
- umap:
whether to use UMAP embeddings or features dataframe
- target:
whether to use the target dataframe or features dataframe
- Returns:
pd.DataFrame: dataframe of model matrix given the inputs
- Parameters:
g (Plottable)
kind (Literal['nodes', 'edges'])
cols (List | str | None)
- Return type:
Any
- graphistry.compute.cluster.make_safe_gpu_dataframes(X, y, engine)#
Coerce a dataframe to pd vs cudf based on engine
- Parameters:
X (Any | None)
y (Any | None)
engine (Engine)
- Return type:
Tuple[Any | None, Any | None]
- graphistry.compute.cluster.resolve_dbscan_engine(engine, g_or_df=None)#
Resolves the engine to use for DBSCAN clustering
If ‘auto’, decide by checking if cuml or sklearn is installed, and if provided, natural type of the dataset. GPU is used if both a GPU dataset and GPU library is installed. Otherwise, CPU library.
- Parameters:
engine (Literal['cuml', 'sklearn', 'auto'])
g_or_df (Any | None)
- Return type:
Literal[‘cuml’, ‘sklearn’]
RGCN#
- class graphistry.networks.HeteroClassifier(in_dim, hidden_dim, n_classes, rel_names)#
Bases:
object
- forward(g)#
- class graphistry.networks.HeteroEmbed(num_nodes, num_rels, d, proto, node_features=None, device='cpu', reg=0.01)#
Bases:
object
- Parameters:
num_nodes (int)
num_rels (int)
d (int)
- loss(node_embedding, triplets, labels)#
- score(node_embedding, triplets)#
- class graphistry.networks.LinkPredModel(in_features, hidden_features, out_features)#
Bases:
object
- forward(g, x)#
- class graphistry.networks.LinkPredModelMultiOutput(in_features, hidden_features, out_features, out_classes)#
Bases:
object
- embed(g, x)#
- forward(g, x)#
- class graphistry.networks.MLPPredictor(in_features, out_classes)#
Bases:
object
One can also write a prediction function that predicts a vector for each edge with an MLP. Such vector can be used in further downstream tasks, e.g. as logits of a categorical distribution.
- apply_edges(edges)#
- forward(graph, h)#
- class graphistry.networks.RGCN(in_feats, hid_feats, out_feats, rel_names)#
Bases:
object
Heterograph where we gather message from neighbors along all edge types. You can use the module dgl.nn.pytorch.HeteroGraphConv (also available in MXNet and Tensorflow) to perform message passing on all edge types, then combining different graph convolution modules for each edge type.
- :returns
torch model with forward pass methods useful for fitting model in standard way
- forward(graph, inputs)#
- class graphistry.networks.RGCNEmbed(d, num_nodes, num_rels, hidden=None, device='cpu')#
Bases:
object
- forward(g, node_features=None)#
- class graphistry.networks.SAGE(in_feats, hid_feats, out_feats)#
Bases:
object
- forward(graph, inputs)#
- graphistry.networks.train_link_pred(model, G, epochs=100, use_cross_entropy_loss=False)#
HeterographEmbedModuleMixin#
- class graphistry.embed_utils.EmbedDistScore#
Bases:
object
- static DistMult(h, r, t)#
- Parameters:
h (Any)
r (Any)
t (Any)
- Return type:
Any
- static RotatE(h, r, t)#
- Parameters:
h (Any)
r (Any)
t (Any)
- Return type:
Any
- static TransE(h, r, t)#
- Parameters:
h (Any)
r (Any)
t (Any)
- Return type:
Any
- class graphistry.embed_utils.HeterographEmbedModuleMixin#
Bases:
object
- embed(relation, proto='DistMult', embedding_dim=32, use_feat=False, X=None, epochs=2, batch_size=32, train_split=0.8, sample_size=1000, num_steps=50, lr=0.01, inplace=False, device='cpu', evaluate=True, *args, **kwargs)#
Embed a graph using a relational graph convolutional network (RGCN), and return a new graphistry graph with the embeddings as node attributes.
Parameters#
- relationstr
column to use as relation between nodes
- protoProtoSymbolic
metric to use, [‘TransE’, ‘RotateE’, ‘DistMult’] or provide your own. Defaults to ‘DistMult’.
- embedding_dimint
relation embedding dimension. defaults to 32
- use_featbool
wether to featurize nodes, if False will produce random embeddings and shape them during training. Defaults to True
- XXSymbolic
Which columns in the nodes dataframe to featurize. Inherets args from graphistry.featurize(). Defaults to None.
- epochsint
Number of training epochs. Defaults to 2
- batch_sizeint
batch_size. Defaults to 32
- train_splitUnion[float, int]
train percentage, between 0, 1. Defaults to 0.8.
- sample_sizeint
sample size. Defaults to 1000
- num_stepsint
num_steps. Defaults to 50
- lrfloat
learning rate. Defaults to 0.002
- inplaceOptional[bool]
inplace
- deviceOptional[str]
accelarator. Defaults to “cpu”
- evaluatebool
Whether to evaluate. Defaults to False.
Returns#
self : graphistry instance
- Parameters:
relation (str)
proto (str | Callable[[Any, Any, Any], Any] | None)
embedding_dim (int)
use_feat (bool)
X (List[str] | str | DataFrame | None)
epochs (int)
batch_size (int)
train_split (float | int)
sample_size (int)
num_steps (int)
lr (float)
inplace (bool | None)
device (str | None)
evaluate (bool)
- Return type:
- predict_links(source=None, relation=None, destination=None, threshold=0.5, anomalous=False, retain_old_edges=False, return_dataframe=False)#
predict_links over all the combinations of given source, relation, destinations.
Parameters#
- source: list
Targeted source nodes. Defaults to None(all).
- relation: list
Targeted relations. Defaults to None(all).
- destination: list
Targeted destinations. Defaults to None(all).
- thresholdOptional[float]
Probability threshold. Defaults to 0.5
- retain_old_edgesOptional[bool]
will include old edges in predicted graph. Defaults to False.
- return_dataframeOptional[bool]
will return a dataframe instead of a graphistry instance. Defaults to False.
- anomalousOptional[False]
will return the edges < threshold or low confidence edges(anomaly).
Returns#
- Graphistry Instance
containing the corresponding source, relation, destination and score column where score >= threshold if anamalous if False else score <= threshold, or a dataframe
- Parameters:
source (list | None)
relation (list | None)
destination (list | None)
threshold (float | None)
anomalous (bool | None)
retain_old_edges (bool | None)
return_dataframe (bool | None)
- Return type:
- predict_links_all(threshold=0.5, anomalous=False, retain_old_edges=False, return_dataframe=False)#
predict_links over entire graph given a threshold
Parameters#
- thresholdOptional[float]
Probability threshold. Defaults to 0.5
- anomalousOptional[False]
will return the edges < threshold or low confidence edges(anomaly).
- retain_old_edgesOptional[bool]
will include old edges in predicted graph. Defaults to False.
- return_dataframe: Optional[bool]
will return a dataframe instead of a graphistry instance. Defaults to False.
Returns#
- Plottable
graphistry graph instance containing all predicted/anomalous links or dataframe
- Parameters:
threshold (float | None)
anomalous (bool | None)
retain_old_edges (bool | None)
return_dataframe (bool | None)
- Return type:
- class graphistry.embed_utils.SubgraphIterator(g, sample_size=3000, num_steps=1000)#
Bases:
object
- Parameters:
sample_size (int)
num_steps (int)
- graphistry.embed_utils.check_cudf()#
- graphistry.embed_utils.log(msg)#
- Parameters:
msg (str)
- Return type:
None